Long-distance proton transfer with a break in the bacteriorhodopsin active site.

نویسندگان

  • Prasad Phatak
  • Jan S Frähmcke
  • Marius Wanko
  • Michael Hoffmann
  • Paul Strodel
  • Jeremy C Smith
  • Sándor Suhai
  • Ana-Nicoleta Bondar
  • Marcus Elstner
چکیده

Bacteriorhodopsin is a proton-pumping membrane protein found in the plasma membrane of the archaeon Halobacterium salinarium. Light-induced isomerization of the retinal chromophore from all-trans to 13-cis leads to a sequence of five conformation-coupled proton transfer steps and the net transport of one proton from the cytoplasmic to the extracellular side of the membrane. The mechanism of the long-distance proton transfer from the primary acceptor Asp85 to the extracellular proton release group during the O --> bR is poorly understood. Experiments suggest that this long-distance transfer could involve a transient state [O] in which the proton resides on the intermediate carrier Asp212. To assess whether the transient protonation of Asp212 participates in the deprotonation of Asp85, we performed hybrid Quantum Mechanics/Molecular Mechanics proton transfer calculations using different protein structures and with different retinal geometries and active site water molecules. The structural models were assessed by computing UV-vis excitation energies and C=O vibrational frequencies. The results indicate that a transient [O] conformer with protonated Asp212 could indeed be sampled during the long-distance proton transfer to the proton release group. Our calculations suggest that, in the starting proton transfer state O, the retinal is strongly twisted and at least three water molecules are present in the active site.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural and energetic determinants of primary proton transfer in bacteriorhodopsin.

In the light-driven bacteriorhodopsin proton pump, the first proton transfer step is from the retinal Schiff base to a nearby carboxylate group. The mechanism of this transfer step is highly controversial, in particular whether a direct proton jump is allowed. Here, we review the structural and energetic determinants of the direct proton transfer path computed by using a combined quantum mechan...

متن کامل

Solvent-mediated proton transfer in catalysis by carbonic anhydrase.

Considerable attention has been focused on proton transfer through intervening water molecules in complex macromolecules of biological interest, such as bacteriorhodopsin, cytochrome c oxidase, and many others. Proton transfer in catalysis by carbonic anhydrase provides a useful model for the study of the properties of such proton translocations. High-resolution X-ray crystallography in combina...

متن کامل

Active site lysine backbone undergoes conformational changes in the bacteriorhodopsin photocycle.

Results are presented demonstrating that the backbone of the active site lysine of bacteriorhodopsin undergoes light-induced structural alterations during bacteriorhodopsin-mediated light-induced proton pumping. This conclusion is based on difference Fourier transform infrared spectroscopy of isotopically labeled bacteriorhodopsin. The data demonstrate that the backbone carbonyl of lysine achie...

متن کامل

Unraveling the mechanism of proton translocation in the extracellular half-channel of bacteriorhodopsin.

Bacteriorhodopsin, a light activated protein that creates a proton gradient in halobacteria, has long served as a simple model of proton pumps. Within bacteriorhodopsin, several key sites undergo protonation changes during the photocycle, moving protons from the higher pH cytoplasm to the lower pH extracellular side. The mechanism underlying the long-range proton translocation between the centr...

متن کامل

Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution.

Photoisomerization of the retinal of bacteriorhodopsin initiates a cyclic reaction in which a proton is translocated across the membrane. Studies of this protein promise a better understanding of how ion pumps function. Together with a large amount of spectroscopic and mutational data, the atomic structure of bacteriorhodopsin, determined in the last decade at increasing resolutions, has sugges...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 131 20  شماره 

صفحات  -

تاریخ انتشار 2009